Note on sparsity in signal recovery and in matrix identification
نویسنده
چکیده
The standard approach to recover a signal with a sparse representation in D is to design a measurement matrix ΦD ∈ Cm×n which allows the recovery of any f ∈ Σk from the measurement vector ΦDf whenever k is sufficiently small. While a minimal requirement for the recovery of any f ∈ Σk is that the constructed map ΦD : Σ D k −→ C, f 7→ ΦDf is injective, the recent literature on sparse signal recovery focuses mainly on numerically robust recovery methods whose application require that ΦD is not only injective but well conditioned on its domain. Note that the Euclidean basis E = {ej} is commonly used as a dictionary. Then N = n and f ∈ Σk if f has at most k nonzero entries.
منابع مشابه
Speech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملA Sharp Sufficient Condition for Sparsity Pattern Recovery
Sufficient number of linear and noisy measurements for exact and approximate sparsity pattern/support set recovery in the high dimensional setting is derived. Although this problem as been addressed in the recent literature, there is still considerable gaps between those results and the exact limits of the perfect support set recovery. To reduce this gap, in this paper, the sufficient con...
متن کاملA Novel Methodology for Structural Matrix Identification using Wavelet Transform Optimized by Genetic Algorithm
With the development of the technology and increase of human dependency on structures, healthy structures play an important role in people lives and communications. Hence, structural health monitoring has been attracted strongly in recent decades. Improvement of measuring instruments made signal processing as a powerful tool in structural heath monitoring. Wavelet transform invention causes a g...
متن کاملVoice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملNonuniform Sparse Recovery with Gaussian Matrices
Compressive sensing predicts that sufficiently sparse vectors can be recovered from highly incomplete information. Efficient recovery methods such as l1-minimization find the sparsest solution to certain systems of equations. Random matrices have become a popular choice for the measurement matrix. Indeed, near-optimal uniform recovery results have been shown for such matrices. In this note we f...
متن کامل